Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Secondary metabolites often function as antipredator defenses, but when bioactive at low concentrations, their off-target effects on other organisms may be overlooked. Candidate “keystone molecules” are proposed to affect community structure and ecosystem functions, generally originating as defenses of primary producers; the broader effects of animal chemistry remain largely unexplored, however. Here, we characterize five previously unreported polyketides (alderenes A to E) biosynthesized by sea slugs reaching exceptional densities (up to 9000 slugs per square meter) in Northern Hemisphere estuaries. Alderenes comprise only 0.1% of slug wet weight, yet rendered live slugs or dead flesh unpalatable to three co-occurring consumers, making a potential food resource unavailable and redirecting energy flow in critical nursery habitat. Alderenes also displaced infauna from the upper sediment of the mudflat but attracted ovipositing snails. By altering communities, such compounds may have unexpected cascading effects on processes ranging from bioturbation to reproduction of species not obviously connected to the producing organisms, warranting greater attention by ecologists.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive “sponge” peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using theStylissa carterisponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the spongeAxinella corrugatawas interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in theA. corrugatagenome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.more » « less
-
Abstract Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery.more » « less
-
Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS–like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 fromElysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.more » « less
An official website of the United States government
